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Abstract. An analysis is undertaken of the self-avoiding walk problem on two distinct 
oriented square lattices. The importance of these two oriented cases to the problem on the 
unoriented square lattice is pointed out by means of a number of transformations showing 
the interdependence of various apparently different ‘walk’ problems on the oriented and 
unoriented square lattices. 

The total number of self-avoiding walks, C,. and their mean-square sizes, (Ri), are 
exactly enumerated on a computer up to 28 and 36 steps for the two oriented square lattices 
respectively. 

Rigorous upper and lower bounds together with estimates are presented for the con- 
nective constant p(p 2 l imN+m CA’”) for both the oriented square lattices. 

An investigation of the data for the mean-square sizes strongly suggests that if the 
asymptotic form (Ri) = ANY + . . . is assumed, then the effect of the two specific orientations 
dealt with is to change the constant A but not the critical exponent y.  The validity of the 
conjecture y = 1.5 in two dimensions is discussed in the light of the new results. Estimates 
for the constant A are obtained for several ‘restricted’ cases with the assumption that 
, - 1.5 

Substantial support is provided, by means of our transformations and results, to the 
recently proposed view that the critical indices of the self-avoiding walks are not changed 
by the exclusion of nearest-neighbour contacts or by the introduction of ‘weak’ attractive 
nearest-neighbour forces. 

*, - 

1. Introduction 

The self-avoiding walk problem on a crystal lattice is a well-established model of lattice 
statistics. Mathematically this problem is of great interest since it forms a well defined 
non-Markovian process. 

Physically the problem is of considerable importance for it takes account in a realistic 
way of the ‘excluded volume’ effect of a polymer chain in dilute solutions (Domb 1963). 
The model is related to other problems in lattice statistics, namely the Ising problem of 
ferromagnetism (Domb 1970a, Fisher and Sykes 1959) and related topics. 

The self-avoiding condition, whereby the walk does not involve double occupancy 
of any lattice site, introduces a long range interaction between the steps of the walk 
which has proved to be a particularly intractable problem. Although the problem is still 
far from being solved there is now a considerable amount of information regarding at 
least three main properties of self-avoiding walks which, in order of physical significance, 
are the following. 

(i) The mean square end-to-end distance ( R ’ ) .  
(ii) The distribution function for self-avoiding walks. 

(iii) The total number of self-avoiding walks of N steps CN. 

1885 
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Nevertheless the only definite mathematical information available is concerned with 
property (iii) (Hammersley 1957, Kesten 1963) and property (ii) (Fisher 1966, Chay 1972). 
It is true that most of the studies of this problem are computer-oriented, and it is probably 
as a result of these studies that a good deal of information is now available. This latter 
computer-oriented approach has followed two independent directions, namely the 
Monte Carlo and the exact enumeration methods. 

In the present paper we shall follow the latter of these two methods and we enumerate 
all the possible self-avoiding walks up to a certain number of steps for two distinct 
(although related) orientations on the square lattice. 

Section 2 has been devoted to explaining the motive behind our investigation and to 
describing a number of transformations of self-avoiding walks with attractive or repul- 
sive forces between nearest-neighbour contacts on the oriented and unoriented square 
lattices. The interdependence of these problems suggests that the critical indices a and y 
(see equations (1) and (2) below) are unchanged for a variety of apparently different 
problems and this is further discussed in 5 and 6. The results of our enumeration are 
presented in Q 3 (see table l), up to 28 and 36 steps for the two oriented cases respectively. 
Upper and lower bounds together with estimates for the asymptotic behaviour of the 
total number of self-avoiding walks are determined in Q 4 for both these oriented square 
lattices. 

In particular it is argued that the conjectured asymptotic form for the total number of 
self-avoiding walks 

is valid for both the oriented cases. N is the number of steps, p is the so-called connective 
constant (or attrition parameter) and the exponent a is a constant conjectured to depend 
on the ‘dimensionality’ of the lattice (Fisher and Sykes 1959). 

Section 5 is devoted to an investigation of the mean square end-to-end distance ( R 2 ) .  
It is shown that according to our transformation in 5 2 the effect of the orientation 
(obtained by means of this transformation) on the shape of self-avoiding walks on the 
unoriented square lattice can be described as a repulsive or attractive potential (depend- 
ing on the orientation) between nearest-neighbour contacts. In particular one of these 
orientations (UMS orientation, see 5 2) acts via the transformation as a repulsive potential 
between nearest-neighbour contacts or, to use a different terminology, as a weighting 
function on the entire sample of self-avoiding walks on the unoriented square lattice. 
Thus it is argued (and we produce numerical results to justify this) that the mean square 
end-to-end distance for the unoriented square lattice lies between the corresponding 
quantities for the two unoriented square lattices described in $2. In particular our 
numerical evidence shows that if we assume (as is usually done) the asymptotic form 

then the effect of these orientations is to change the constant A but not the critical 
exponent y. 

This is completely justified since we are using the same model (namely a specific 
traffic regulation) to describe two apparently different problems, ie a self-avoiding walk 
problem with successive steps of the walk at right angles and a self-avoiding walk 
problem with a repulsive potential between nearest-neighbour contacts. It is true that 
one should not expect the restriction of fixed angles between successive steps of the walk 
to change the critical exponent y ; therefore our transformation suggests that neither 
is the repulsive potential thus introduced strong enough to change y. 

C, N NapN (1) 

( R i )  N A N Y  (2) 

Finally our conclusions are summarized in 0 6. 
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2. Trivial and non-trivial traffic regulations 

In this section we shall briefly discuss the random and self-avoiding walk problem on a 
square lattice with certain orientations. 

Clearly, for certain orientations, any co-oriented walk is a self-avoiding walk, ie the 
self-avoidance condition is removed by the restrictions of the orientation. Let us 
consider in particular the orientation which allows the walk to proceed either upwards 
or to the right only. Hence, it follows that 

CN = zN ( R i )  = (1 /2N)  f ( f ) ( N 2 - 2 n N + 2 n 2 ) .  
n = O  

Thus we obtain 

i N 2  < ( R i )  < N 2  

or 

( R i )  - N 2 .  

Such orientations which remove the self-avoiding condition are much easier to solve 
(another less trivial example, but one that still gives results similar to those shown above, 
is obtained by not allowing the walks to progress in the - Y direction), but they have a 
crucial effect on the asymptotic behaviour of the mean square end-to-end distance, ( R 2 ) .  
One of the main questions to be answered in this paper is the following : do orientations 
which preserve the self-avoidance condition change the asymptotic behaviour of ( R 2 )  
and in particular the critical exponent y? The answer to this question is not by any means 
easy, but we conjecture that for certain orientations equation (2 )  is valid and in particular 
that the critical exponent y is the same as in the unoriented case. 

We have chosen for our study two particular orientations as shown in figures 1 and 2. 
In fact these orientations are related by the covering operation as shown by Kasteleyn 
(1963). Following Kasteleyn we shall refer to the oriented square lattice in figure 1 as the 
Manhattan-square lattice (MS) and to the oriented square lattice in figure 2 as the under- 
lying lattice of the Manhattan-square lattice (UMS). 

Figure 1. Square lattice oriented in accordance with 
the 'Manhattan' orientation (MS lattice). 

Figure 2. Square lattice oriented in accordance with 
theunderlying orientation ofthe'Manhattan' orienta- 
tion (UMS lattice). Note that the Manhattan square 
lattice in figure 1 may be obtained from this lattice 
by means of the covering operation (Kasteleyn 1963). 
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The first striking observation regarding walks between these two oriented lattices 
arises from the fact that they (ie the above mentioned lattices) are related by means of the 
covering operation. Thus we may easily prove that there is a one-to-one correspondence 
between N-stepped ‘trails’ (ie walks not involving double occupancy of any step) on the 
UMS lattice and (N - 1)-stepped self-avoiding walks on the MS lattice. 

There is also a further one-to-one correspondence between N-stepped self-avoiding 
walks on the UMS lattice and (N - 1)-stepped self-avoiding walks with no nearest- 
neighbour contacts on the MS lattice. 

Similar relationships have been demonstrated by Watson (1970,1974) for unoriented 
lattices related by the covering operation (Watson’s publications were discovered by 
the present author immediately prior to the completion of this paper.) 

Nevertheless the transformations described above establish the equivalence between 
‘walk’ problems on the two oriented square lattices and although useful they are of 
limited importance. The following transformations (illustrated in figure 3) define 
relationships between ‘walk’ problems on oriented and unoriented square lattices and, 
in our opinion, they have far reaching consequences. 

First, for the UMS lattice it can be easily shown that there is a one-to-one correspond- 
ence between N-stepped random walks on the unoriented square lattice and 2N-stepped 
random (co-oriented) walks on the UMS lattice. This is shown by orienting (as with the 
UMS lattice) the lattice resulting from superposition of the square lattice over its dual (see 
figure 3). Therefore we may show that 

(R;)LMS = b2N (3) 

Figure 3. Example to illustrate the correspondence between walks on the oriented and 
unoriented square lattices. Heavy lines show a self-avoiding walk (of 15 steps) on the square 
lattice. Broken oriented lines represent the corresponding walk (of 30 steps) on a square 
lattice constructed as indicated by these lines and oriented as with the UMS lattice (figure 2). 
Note that the intersections along the oriented walk are the result of certain nearest-neighbour 
contacts along the unoriented self-avoiding walks (see also figure 5). Finally dotted lines 
represent the corresponding self-avoiding walk (of 39 steps) on the Manhattan square lattice. 
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where the superscript r refers to random walks and b is the lattice spacing of the UMS 
lattice. A similar result holds for the MS lattice. 

The above result and the fact that the self-avoiding condition is maintained on these 
oriented lattices is an indication that the critical exponent may be the same as in the 
unoriented case. Another stronger indication is the following observation. For every 2 N -  
stepped self-avoiding walk on the UMS lattice there corresponds exactly one N-stepped 
self-avoiding walk on the unoriented square lattice. The reverse is not true (see example 
in figure 3). Thus since the self-avoidance condition tends to increase y we may expect 
that 

YUMS 2 YS' (4) 

YUMS = YS' ( 5 )  

Nevertheless numerical evidence shows (see % 3 and 5) that 

It follows from the above that 

Following similar considerations and using the covering property between the UMS and 
MS lattices we easily prove that, for every N-stepped self-avoiding walk on the square 
lattice, there corresponds exactly one ( 2 N  - 1)-stepped self-avoiding walk on the MS 
lattice. The reverse is not true. Thus we obtain 

and we expect 

3. The method of exact enumeration 

As mentioned in the introduction one of the major attempts to investigate the self- 
avoiding walk problem on lattices consists in replacing the mathematical analysis of the 
problem by a digital computer algorithm. Two independent approaches have been 
followed, ie the Monte Carlo method (Wall and Erpenbeck 1959) and the exact enumera- 
tion method (Domb 1969). Both mtthods arrive independently at similar conclusions 
and there is now a good deal of information regarding various properties of self-avoiding 
walks. Our purpose in this paper is to compare these properties as they appear between 
the oriented and unoriented cases and to determine whether the specific traffic regulations 
(UMS and MS lattices) introduced in $ 2  change the characteristics of these properties 
radically. 

This comparison will be facilitated by employing the exact enumeration method since 
it seems to be better suited for this purpose. 

In table 1 we present the results for the total number of self-avoiding walks CN and 
the mean-square end-to-end distance, ( R i ) ,  for the following three cases. 

(a) Square lattice (s) up to 18 steps (Domb 1963). 
(b) Manhattan-square lattice (MS) up to 28 steps. 
(c) The underlying lattice of the Manhattan-square lattice (UMS) up to 36 steps. 
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The work was executed on a PDP 10 computing machine. The program has been 
developed by the present writer and was written in ALGOL 60. The execution time for 
N = 28 and N = 36 for the MS and the UMS lattices respectively was in both cases nearly 
4 h. 

Previous results for the total number of self-avoiding walks, C,, on the MS lattice by 
Barber (1970) up to 21 steps, together with the well-known results for the unoriented 
square lattice have served as a test of the accuracy of our program. 

Table 1. 

s lattice MS lattice 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

4 
12 
36 
100 
284 
780 
2172 
5916 
16268 
44100 
120292 
324932 
88 1509 
2374444 
6416596 
17245332 
46466676 
124658732 

1 ~oooo 2 
2.6667 4 
4.5556 8 
7.0400 14 
9.5634 26 
12.5744 48 
15.5562 88 
19.0128 154 
22.41 14 278 
26.2425 500 
30.0 177 900 
34,1870 1576 
38,3043 2806 
42,7864 4996 
47.2 178 8894 
51,9925 15564 
56.71 64 27538 
61.7665 48726 

86212 
150792 
265730 
468342 
825462 
1442866 
2535802 
4457332 
7835308 
13687192 

1 ~oooo 
30000 
5@000 
8.oooO 
10,8462 
13.6667 
16.6364 
20.5714 
24.02 16 
27.5760 
31,151 1 
35.7005 
39.7855 
43.9023 
48.0573 
53.1 380 
57.7414 
62.3746 
67.0452 
72.5750 
77.6521 
82.7530 
87.8873 
93.8879 
99.3382 
104.8679 
110.4280 
1 16.7494 

UMS lattice 

CN 

2 
4 
8 
12 
20 
32 
52 
84 
136 
220 
356 
564 
904 
1448 
2320 
3684 
5872 
9376 
14960 
23688 
37652 
599 12 
95316 
150744 
239080 
379528 
602424 
951788 
1507136 
2388252 
3784344 
5973988 
9447880 
14950796 
23658540 
37321752 

( R i )  

1 .0000 
2.0000 
3~oooo 
5.3333 
74000 
1 O~oooo 
12.6923 
15.6190 
18.6471 
21.781 8 
254)000 
28,8794 
32,5575 
36.3425 
40.2000 
44.5081 
48.7439 
52.9625 
57.2770 
62.1101 
66.7886 
71,4555 
76.1833 
8 1,4329 
86.5250 
91.5915 
96.71 11 
102.3426 
107.8105 
1 13.2487 
118.7321 
124,7198 
130.5386 
136.3247 
142.151 1 
148.4715 
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4. Bounds and asymptotic behaviour for the number of self-avoiding walks 

In this section we shall derive upper and lower bounds for the asymptotic behaviour of the 
total number of self-avoiding walks on both the MS and UMS lattices. Estimates will also 
be given using the results shown in table 1. 

First let us consider the MS lattice. For this lattice an exact solution was obtained 
by Kasteleyn (1963) for the different (albeit related) problem of Hamiltonian walks, ie 
self-avoiding walks filling the lattice (for further progress on this problem and its applica- 
tions to the theory of polymers see Gordon et a1 1975, Malakis 1975). Kasteleyn showed 
that the number of Hamiltonian walks on the MS lattice varies asymptotically as 
(1.338 . . .)N, where N is the total number of lattice sites. Later Barber and Ninham (1970) 
conjectured that the same number describes the asymptotic behaviour of the number of 
self-avoiding walks on the MS lattice. Nevertheless the same author (Barber 1970) 
realized that the limiting processes of the two problems are essentially different and by 
using the method of exact enumeration and the well-known ratio and Pade techniques 
he estimated that 

P M S  = 1’733+0.003 (9) 
and that the exponent U in equation (1) was 

LX = 0.33 f 0.03. (10) 

A lower bound for these walks may easily be obtained by not allowing the walks to 
progress in the - Y direction, thus obtaining for the generating function 

(11) 

(12) 
An upper bound may be determined by considering walks with no square intersections. 
The oriented graph which eliminates the square intersections along the walks on the MS 
lattice is shown in figure q a ) .  The dominant eigenvalue of the adjacency matrix of this 
graph provides the following upper bound : 

(13) 

G(x) = 1 + xG(x) + x~G(x )  

,uMS 2 8 1  + 51’2) = 1’618.. . . 
which produces the following lower bound : 

pMs < 1.839.. . . 

1.414. . .  < / A ~ M S  < 1.618 . . . .  
Let us next consider the UMS lattice. Following a similar procedure we find that 

(14) 

(0) ( b) 
Figure 4. (a)  The oriented graph which eliminates square intersections along the walks on 
the Manhattan square lattice. (b) The oriented graph which eliminates square intersections 
along the walks on the UMS lattice. 
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The oriented graph which eliminates the square intersections along the walk on the 
UMS lattice is shown in figure q b ) .  Finally, using the results given in table I (columns 4 
and 6) and the ratio method (Fisher 1967), we confirm the estimates (9) and (10) given by 
Barber, and we find that for the UMS lattice 

pUMS = 1.559+0403 (15) 

and for the exponent c( 

a = 0.32 + 0.02. 

Thus it appears that the formula CN 'c N a p N  holds asymptotically for both the MS and 
UMS oriented lattices and, in particular, we note that the exponent a seems to retain its 
two-dimensional value, namely a = $ (Fisher and Sykes 1959). 

5. The mean-square end-to-end distance 

It will easily be seen from the transformation described in 4 2 (see also figure 3) that the 
UMS orientation shown in figure 2 defines a certain subclass of the total class of self- 
avoiding walks on the unoriented square lattice. More precisely the orientation acts as a 
weighting function on the total class of all the topologically distinct self-avoiding walks 
on the square lattice. The weights thus assigned are 0, and 1. In order to illustrate this, 
one example of each case is given in figure 5 ,  where the length of the walks is taken to be 
eight. It is important to note that the weight 1 is assigned to self-avoiding walks with no 
nearest-neighbour contacts, whereas the weights 3 and 0 are assigned to self-avoiding 
walks with at least one and two nearest-neighbour contacts respectively. 

We would expect the mean-square end-to-end distance for these walks to lie between 
the corresponding quantities for simple self-avoiding walks and self-avoiding walks with 
no nearest-neighbour contacts at all. The results obtained below provide strong support 
for the above observation and throw considerable light on the problem as a whole. 
Similar considerations hold for the self-avoiding walk problem on the MS lattice, but 
these wiil be omitted for brevity. 

.., . . .  

I '. L . . ... ,.. 
'. I . .. 

w - 0  I 
2 

w = -  W ' I  

Figure 5. Three examples of self-avoiding walks on the unoriented square lattice to illus- 
trate the relationship between self-avoiding walks on the unoriented square and the UMS 

lattices. Note that the weight w = 1 is assigned to self-avoiding walks with no nearest- 
neighbour contacts. The weight w = $ is assigned to self-avoiding walks with at least one 
nearest-neighbour contact. The meaning of the value is that half of the number of self- 
avoiding walks with a topology such as shown above (case two) is ruled out by the restric- 
tions of the orientation. The last example (w = 0) clarifies the kind of topoiogies which are 
ruled out completely by the restrictions of the orientation. 
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Let a and b denote the lattice spacings of the square and UMS lattices respectively. 
Since a’ = 2b2 (see figure 3), it follows that the corresponding mean-square end-to-end 
distances are related by 

(R i ) ;  = $ ( R i N ) U M S  (17) 
where both ( R i ) ;  and (Ri ,v )uMs are determined with their lattice spacings taken as 
unity and the superscript, s, is introduced to show that we are referring to a certain 
subclass of the total class of self-avoiding walks on the square lattice. 

Thus, in order to determine the mean-square distance, ( R i ) : ,  for the above-described 
subclass, one has to divide the corresponding quantity for 2N steps in the last column of 
table 1 by a factor of two. The resultant values are all higher than the corresponding 
values for the total class of self-avoiding walks in column 3 of table 1. Furthermore the 
ratio ( R i ) : / ( R i ) s  depends linearly on 1/N and tends to a limiting value. Thus if we 
define 

aN = < R ; ) : l ( R i h  (18) 
then the linear projections defined by 

a$ = (l / i)[(N+i)aN+i-NaNl (19) 
should provide successive estimates of the limiting value of a N ,  a = lim,w- ~ a,. Repeated 
application of equation (19) for i = 2 yields table 2 from which we may confidently 
estimate that 

Similarly the total class of self-avoiding walks on the MS lattice defines a class of walks 
on the unoriented square lattice which includes all the self-avoiding walks on the un- 
oriented square lattice together with self-intersecting walks on the same lattice. Follow- 
ing considerations similar to those outlined above we may define 

a = 1.215&0QO5. (20) 

Incidentally, there is a minor error in this calculation, in that the starting and ending 
points of the walks for the two cases (ie the self-avoiding walks on the MS lattice and the 
walks on the square lattice defined by the MS orientation) do not coincide ; but this would 
make no difference to our calculations. 

Table 3 shows that 

Furthermore it is seen that the values of b, constantly increase with N and since on 
physical grounds they would not exceed unity, we may safely conclude that they tend 
to a non-zero limiting value. 

Now let us turn our attention to the asymptotic form, equation (2). If the mean- 
square end-to-end distances for all the three cases (s, M, UMS lattices) are given by equation 
(2) then the fact that uN and b, tend to the limiting values a and b respectively implies that 

YMS = ys = YUMS = y. (23) 

A: = (1.215 f 0 4 0 5 ) A s  (244 

A”,, = (1/2’-’)(1.215f0.005)A, (24b) 

AMs = 22-Y(O*66&0’01)As. ( 2 4 4  

Consequently using the estimates (20) and (21) we find 
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Table 2. Estimates for the ratios aN = ( R i ) & ’ ( R i ) s  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1 1  

12 

13 

14 

15 

16 

17 

18 

1 ~oooo 

1 .oooo 

1.0976 

1.1093 

1.1388 

1.1483 

1,1681 

1.1705 

1.1816 

1.1834 

1.1902 

1.1910 

1.1956 

1.1960 

1,1992 

1.1994 

1,2018 

1.2019 

1,1464 

1.2186 

1.2007 

1.2264 

1.2413 

1,2369 

1.2288 

1.2350 

I .2290 

1.2290 

1.2250 

1.2258 

1.2229 

1.2234 

1.2213 

1,221 7 

1.2278 

1,2342 

1.3023 

1,2578 

1 .I 976 

1.2295 

1.2298 

1,2050 

1,2070 

1.2100 

1.2110 

1.2088 

1.2108 

1.2095 

1,3396 

1.2814 

1,0404 

1.1727 

1.3103 

1.1315 

1.1272 

1,2301 

1,229 1 

1.2031 

1,2099 

1.2136 

The above equations ((23) and (24)) will be valid (provided that our estimates (20) and 
(21) are correct)even if the asymptotic form (2) is not, and the more general behaviour (25) 
is assumed. 

( R i )  = ANY+A’NY’+ . . . (25) 

( R i ) ,  = 0*755N3” +0.24N (26) 

with . . . < y‘ < y. Thus, following Domb (1963), if we assume that 

we find using equations (24) and (26) that 

(R; ) :  (0.917+0*003)N3/2 

(Rlf)UMS 2: (0.648 .t 0.002)N ’” 
( R ; ) ,  = (0.705f0.01)~3/2 
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Table 3. Estimates for the ratios b, = & ( R $ , -  ,)MS/(Ri)S 

1895 

N bN 

I 0.25000 

2 0.46876 

3 0.59523 

4 0.59078 

5 0.62796 

6 0.61934 

7 0.63938 

8 0.63 1 9 1 

9 0,644 1 1 

10 0.63871 

11 064672 

12 0,64269 

13 0,64835 

14 0.64523 

0.76784 

0.7 1280 

0.67705 

0,67644 

0,66795 

0.66962 

0.66064 

0.66591 

0.65847 

0.66263 

0.65731 

0,66043 

0.63 I 66 

0.64009 

0.65430 

0.65598 

0.64237 

0,65478 

0.65088 

0.64951 

0.65209 

0.6494 1 

0,66561 

0.671 86 

0,62448 

0.65240 

0.6721 5 

0.63367 

0.65632 

0.64901 

and for the class of intersecting walks on the square lattice defined by the Manhattan 
orientation 

(R;)?‘ (0,498 & 0-O07)N3’2. 

These estimates are, however, based on our estimates (20) and (22) and on the asymptotic 
form (26) proposed by Domb (1963), and it would be interesting to test them by inde- 
pendently investigating each case without resorting to any comparison between the 
corresponding results on the unoriented square lattice. Following such an  independent 
line we confirm that all the estimates thus obtained (with the assumption that y = 1.5), 
were found to lie in the range of those given above. 

Turning our attention next to the value of the critical exponent y and assuming the 
asymptotic form (2) we may define the successive estimates y N  given by 

Y N  = N[(<R;+ l1 (28) 
or, when odd-even oscillations occur (for loose packed lattices), we may employ 

The values of Y N  for the three cases on the square unoriented lattice corresponding (a)  
to simple self-avoiding walks (branch A in figure 6), (b) to walks with possible intersec- 
tions resulting from the transformation between MS and s lattices (branch B in figure 6) 
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Figure 6. Plot of yN against I/N for the three classes of walks on the square lattice explained 
in 4 5 A, s lattice; B. MS lattice; C, UMS lattice 

and (c) to the 'weighted' self-avoiding walks resulting from the transformation between 
UMS and s lattices (branch C in figure 6 )  are tabulated in table 4. Although the strongest 
reason for proposing equality (23) for the critical exponent is the fact that the ratios aN and 
bN (defined by (18) and (21) respectively) tend to a limiting value quite regularly, neverthe- 
less the variation of the corresponding values of yN further supports this conjecture. In 
particular, it may be argued that the critical exponent y is overestimated by the conjectured 
value y = 1.5. This can be seen from figure 6 where all three branches (especially the top 
one) show a tendency to attain a value lower than 1.5. One would therefore suggest an 
estimate of the order of 7 = 1.49 f 0.01 or possibly y = 1.48 i 0.02. 

Table 4. Estimates for .jN = +(y, + y N +  

N 

1 
2 
3 
4 
5 
6 
7 
8 
9 
IO 
I 1  
12 
13 
14 
15 
16 

s lattice MS lattice 
? N 7 ,v 

UMS lattice 
IN 

1.5147 3.1692 
1,5264 1.9700 
1,5349 1.6886 
1,5040 1.6298 
1,4985 1.5735 
1,4891 1,5592 
1.4927 1.5337 
1.4843 1.531 1 
1.4885 1,5161 
1.4832 1,5160 
1.4866 1,5067 
1.4832 1,5074 
1.4856 
1,4834 
1.4853 
1.4837 

1,7083 
1.7179 
1,6320 
1.6038 
1.5899 
1.5617 
1,5462 
1,5370 
1.5296 
1,5203 
1,5165 
1.51 15 
1.5089 
1,5056 
1.5041 
1.5017 
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On the other hand, the lowest branch in figure 6 shows a slight tendency to drift 
upwards, but not strongly enough to encourage the conjecture y = 1.5. Nevertheless 
this discrepancy has already been discussed by a number of authors (see, for example, 
Domb 1963, Hioe 1967). One could therefore scarcely disregard the long standing 
conjecture that 3 = 1.5, or the possibility of a slightly lower value. 

6.  Conclusions 

The transformations carried out in 0 2 and the numerical evidence presented in 0 5 
strongly suggest that there is a variety of apparently different ‘walk’ problems that give 
rise to the same values of the critical indices a and y for the self-avoiding walk problem. 

In particular the numerical evidence of 0 5 greatly supports the view of Hioe (1967) 
(note that Fisher and Hiley (1961) had earlier suggested the opposite view) that the critical 
exponent remains unchanged when nearest-neighbour contacts are forbidden along a 
self-avoiding walk. 

Our estimate (27a) for the subclass of self-avoiding walks on the square lattice 
(determined by the UMS orientation) lies between the estimate (26) given by Domb (1963) 
for simple self-avoiding walks and the estimate 

(R;,),O = 1.25N3’2 (30) 
given by Hioe (1967) for self-avoiding walks with no nearest-neighbour contacts. The 
superscript, 0, means no ‘nearest-neighbour contacts’. 

Furthermore the interdependence between ‘walk’ problems on the three cases 
considered here (UMS, MS and s lattices) suggest that the ‘trail’ problem as well as the 
nearest-neighbour contact self-avoiding walk problem are equivalent regarding the 
values of a and y. 

Thus one can easily deduce from (27b) for the self-avoiding walk problem with no 
nearest-neighbour contacts on the MS lattice that 

(Ri)O,, = (1.296f0404)N3’2 (31) 

(R;)LMS = (0.3525 0*O05)N3’2. (32) 

and for the ‘trail’ problem on the UMS lattice one finds from (27c) that 

Thus it is clear that in all cases attractive forces decrease the value of the constant A 
whereas repulsive forces increase its value. 

Furthermore, it now seems possible to hypothesize that the ‘trail’ problem will give 
rise to the same values of a and y as the self-avoiding walk problem on the same lattice. 
One could possibly go a step further and conjecture that by restricting the walks to visit 
a lattice site at most m times a significant change on the critical exponent y will not be 
produced whenever m is finite and N -+ CO. 

Although there seems to be no rigorous way to verify these generalizations, their 
validity could probably be supported by Monte Carlo enumerations of very long walks. 
Of course the exact enumeration method cannot provide any such information since it is 
clear that the passage to the asymptotic behaviour will be very slow. 

Finally it may be noted that our results and conclusions are relevant to the view 
recently expressed by Domb (1970b), to the effect that it is possible that for a single 
polymer chain there is no single @temperature at which the critical exponent y is 1 for 
all N ,  whereas for a fixed value of N there is no doubt that such a &temperature exists. 
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